
KMA315 Analysis 3A: Solutions to Problems 2

1. Give and justify at least one example for each of the following:

(i) F a sequence (yn)∞n=0 of real numbers such that limn→∞ yn does not exist while limn→∞ |yn|
does exist; (2 marks)

(ii) a sequence of real numbers that diverges but has at least one convergent subsequence; and

(iii) F a sequence of rational numbers that converges to an irrational number (you may search
the internet to find an example, though cite where you found it and make sure you under-
stand the justification/explanation that you give), also using your example explain whether
the rational numbers are a complete metric space. (3 marks)

(i) Consider
(
(−1)n

)∞
n=0

, it is trivially the case that limn→∞(−1)n does not exist and that
limn→∞ |(−1)n| = limn→∞ 1 = 1;

(ii) Consider
(
n(−1)n)∞n=0 (related to Problem 1(iii) of Assignment 1), it is trivially the case

when considering even values of n that
(
n(−1)n)∞n=0 diverges, and that the subsequence(

1
2n+1

)∞
n=0

formed by considering odd values of n satisfies limn→∞
1

2n+1
= 0;

(iii) The author was unable to come across any proofs that are suitable for the breadth of
material being covered in this unit, however:

(I) y0 = 1 and yn+1 =
yn+

2
yn

2
for all n ∈ N converges to

√
2 ∈ C(Q);

(II) the sequence
(

Fn

Fn+1

)∞
n=0

of ratios of consecutive Fibonacci numbers converges to the

golden ratio ϕ = 1+
√
5

2
∈ C(Q); and

(III)
(

(1 + 1
n
)n
)∞
n=1

converges to e ∈ C(Q)
(
Note: it follows from Q being closed under

addition and multiplication/powers that (1 + 1
n
)n ∈ Q for all n ∈ N

)
.

Note that each example is a Cauchy sequence of rational numbers that does not converge
to a rational number, consequently the rational numbers are not a complete metric space.
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2. F Let (yn)∞n=0 be the sequence of real numbers defined by y0 = 1 and yn+1 =
√

3yn for all
n ∈ N. Show that:

(i) 1 ≤ yn ≤ 3 for all n ∈ N; (3 marks)

(ii) (yn)∞n=0 is monotonically increasing; (3 marks)

(iii) (yn)∞n=0 converges, and furthermore find the limit limn→∞ yn. (3 marks)

(i) Consider f : R+ → R where f(x) =
√

3x = (3x)
1
2 . Note that it follows from f ′(x) =

3
2
(3x)−

1
2 > 0 for all x ∈ R+ that f is monotonically increasing. Since 1 ≤ f(1) =

√
3 < 3,

1 < f(3) = 3 ≤ 3 and f is monotonically increasing, we must have 1 ≤ f(x) ≤ 3 for all
x ∈ [1, 3]. We note that y0 ∈ [1, 3] as a base case for induction. Let m ∈ N and suppose
ym ∈ [1, 3], then we trivially have 1 ≤ f(ym) = ym+1 ≤ 3. It follows by induction that
1 ≤ yn ≤ 3 for all n ∈ N.

(ii) It is trivially the case that f(x) > x for all x ∈ [1, 3]. For each n ∈ N, yn ∈ [1, 3] and
yn+1 = f(yn) > yn, hence (yn)∞n=0 is monotonically increasing.

(iii) Note that:

(I) y1 = 3
1
2 ;

(II) y2 = (3.3
1
2 )

1
2 = (3

3
2 )

1
2 = 3

3
4 ;

(III) y3 = (3.3
3
4 )

1
2 = (3

7
4 )

1
2 = 3

7
8 .

If it is the case that ym = 3
2m−1
2m , then ym+1 = (3.3

2m−1
2m )

1
2 = (3

2m+1−1
2m )

1
2 = 3

2m+1−1

2m+1 . Hence

by induction we have yn = 31− 1
2n for all n ∈ Z+. Finally limn→∞ yn = limn→∞ 31− 1

2n =
3limn→∞(1− 1

2n
) = 3.
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3. F Prove that if (an)∞n=0 is a monotonically decreasing sequence of real numbers and x ∈ R is
a cluster point of (an)∞n=0 then limn→∞ an = x. (3 marks)

Proof. Let:

(i) (an)∞n=0 be a monotonically decreasing sequence of real numbers (ie. an+1 < an for all
n ∈ N); and

(ii) x ∈ R be a cluster point of (an)∞n=0.

It follows from x being a cluster point of (an)∞n=0 that there is a subsequence (ank
)∞k=0 of (an)∞n=0

that converges to x, ie. for each ε > 0 there exists K ∈ N such that ank
∈ (x− ε, x + ε) for all

k ≥ K.

For such an ε > 0 and associated K ∈ N, for each n > K pick any k1, k2 ≥ K such that
k1 < n < k2. It follows from (an)∞n=0 being monotonically decreasing that ak1 > an > ak2 . Since
ak1 , ak2 ∈ (x−ε, x+ε) then we must also have an ∈ (x−ε, x+ε). Since this holds for all n ≥ K,
we have limn→∞ an = x.
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4. Establish whether the following sets are: (i) open; (ii) closed; and (iii) compact:

(Note: a subset A ⊆ R is compact if and only if it is closed and bounded.)

(i) F (0, 1] = {r ∈ R : 0 < r ≤ 1}; (1 mark)

(ii) Z+ = {1, 2, 3, . . .};

(iii) F Q = {a
b

: a, b ∈ Z}; (1 mark)

(iv) ∅ (the empty set);

(v) F R; (1 mark)

(vi) the Cantor set (use the internet to work out what that is).

(i) Note 1 ∈ (0, 1]. Now for each ε > 0, (1, 1 + ε) * (0, 1], hence (1− ε, 1 + ε) contains points
from outside of (0, 1], therefore (0, 1] is not open. Furthermore 0 is obviously a limit point
of (0, 1] with 0 /∈ (0, 1], so (0, 1] is also not closed, and since it is not closed (0, 1] is also
not compact (by the Heine-Borel theorem);

(ii) As stated in the notes, the rational numbers Q are dense so every real number is a limit
point, which includes the irrational numbers. Consequently:

(I) Q is not closed; and

(II) every open neighbourhood around each rational number contains irrational numbers,
so Q is also not open.

Furthermore since Q is not closed, Q is also not compact (by the Heine-Borel theorem).

(iii) The real numbers R are trivially closed and open, and not bounded. Since R is not
bounded, it follows from the Heine-Borel theorem that R is not compact.
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5. Give and justify at least one example for each of the following:

(i) F a sequence (An)∞n=0 of open subsets of R whose intersection
⋂∞

n=0 An is not open;
(3 marks)

(ii) a subset A ⊆ R such that A is a proper subset of the closure of A, ie. A ⊂ A;

(iii) F subsets A ⊆ B ⊆ R such that A is not compact while B is compact; (1 mark)

(iv) F a sequence (In)∞n=0 of nested closed intervals of R such that the intersection
⋂∞

n=0 In is
empty. Explain why your example does not contradict the Nested Interval Property.
(3 marks)

(i) Let An = (−1− 1
n
, 1+ 1

n
) for all n ∈ Z+. It is trivially the case that An is open for all n ∈ Z+

and that ∩∞n=0An = [−1, 1]. And [−1, 1] is not open since every open neighbourhood/ball
around both −1 and 1 contain points outside [−1, 1];

(ii) The closure of (0, 1) is [0, 1], hence (0, 1) is a proper subset of its closure;

(iii) Let A = (0, 1) and B = [0, 1]: A is not compact since it is not closed; B is trivially closed
and bounded, and hence compact; and A ⊆ B ⊆ R; and

(iv) For each n ∈ N let In = [n,∞). In is closed for all n ∈ N, and In+1 ⊆ In for all
n ∈ N. Hence (In)∞n=0 is a sequence of nested closed intervals of R. Now, for each r ∈ R,
{n ∈ N : n > r} is non-empty and r /∈ In for all n ≥ r. Hence ∩∞n=0In is empty as required.
Note that our example does not contradict the Nested Interval Property since the Nested
Interval Property concerns sequences of nested closed and bounded intervals of R, whereas
our intervals are clearly unbounded.
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